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Oscillatory Phase of Inflaton and Power-Law
Expansion in Bianchi Type-I Universe
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A homogeneous massive scalar field, minimally coupled to the spatially homogeneous
and anisotropic background metric, in the semiclassical theory of gravity is examined.
In the oscillatory phase of inflaton, the approximate leading solution to the semiclassical
Einstein equation for the Bianchi type-I universe shows, each scale factor in each direc-
tion obeyst?® power-law expansion. Further noted that the evolution of scale factors
are mutually correlated.
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1. INTRODUCTION

Although the present universe in its overall structure seems to be spatially
homogeneous and isotropic, there are reasons to believe that it has not been so
in all its evolution and that inhomogeneities and anisotropies might have played
an important role in the early universe (Misner, 1969a,b). The isotropic model is
adequate enough for the description of the later stages of evolution of the universe
but this does not mean that the model is equally suitable for the description of
early stages of the evolution, especially near the singularity (Landau and Lifshitz,
1979). The most general solutions of the problem of gravitational collapse turn
to be locally anisotropic near the singularity (Belinskial, 1971; Heckman and
Schucking, 1962; Thorne, 1967). Cosmological solutions of the Einstein general
relativity are known in which the expansion be anisotropic at first, near the sin-
gularity, and later the expansion became isotropic. To avoid postulating specific
initial conditions, as well as, the existence of particle horizon in isotropic models,
attempts have been made through the study of inhomogeneous anisotropic uni-
verse. Among the anisotropic cosmological models the Bianchi type-1 universe is
the simplest one. In this model the metric is considered as spatially homogeneous
and possibly anisotropic. In contrast to the Friedmann—Robertson—Walker (FRW)
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metric, the Bianchi type-l1 metric has a different scale factor in each direction.
Therefore the expansion in this model can be visualized as anisotropic expansion.
Interests in such models have been received much attention (Bediredki1971;
Heckman and Schucking, 1962; Hu and Parker, 1978; Misner, 1969a,b; Throne,
1967; Zel'dovich and Starobinsky, 1971). Huang has considered the fate of symme-
try in a Bianchi type-1 cosmology using adiabatic approximation for massless field
with arbitrary coupling to gravity (Huang, 1990). Futamas has studied the effective
potential in the Bianchi type-l cosmology (Futamas, 1984). Berkin has examined
the effective potential in the Bianchi type-1 universe, for scalar field having arbi-
trary mass and coupling to gravity (Berkin, 1992). The first order phase transitions
in the Bianchi type-1 cosmology in the early universe also studied recently (Minu
and Kuriakose, 2000).

Anisotropic models of the universe that become isotropic during evolution
have been repeatedly considered (Belinski and Khalatnikov, 1972). These motivate
the study of an anisotropic background cosmological model with the scalar field
possess the advantage of the FRW model (Folomeev and Gurovich, 2000). These
studies show, the Bianchi type-l cosmological model may be quite useful in the
study of the early universe problems. The present work is to study a homogeneous
massive scalar field (inflaton) in the Bianchi type-I universe in semiclassical theory
of gravity, and hence to obtain an approximate leading solution to the semiclas-
sical Einstein equation in the oscillatory phase of the inflaton, after inflation, and
examine whether the scale factors in the Bianchi type-1 cosmology follow the same
power-law expansion as that of isotropic model in semiclassical theory.

2. INFLATON IN SEMICLASSICAL THEORY OF GRAVITY

Most of the cosmological models are based on the classical gravity of the
Friedmann equation and scalar field equation on the FRW universe. To study the
scalar field and the Friedmann equation at deeper level, both background metric and
the field are to be treated quantum mechanically. Because a consistent quantum the-
ory of gravity is not available, in most of the cosmological models, the background
metric is considered as classical and matter field as quantum mechanical. Such an
approximation of the Einstein equation is known as semiclassical approximation.

In semiclassical theory of gravity, the Einstein equation takes the following
form (withh = ¢ = kg = 1 andG = mi%):

8t -
G;,Lv = W(pr)a (l)
p
whereG,, = R,, — %g,wR is the Einstein tensor and'w> is the expectation
value of the energy—momentum tensor for a matter field in a suitable quantum
state under consideration. In the above equation the quantum field, represented by
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a scalar fieldg, is governed by the time dependent Schrodinger equation:

W6, = (s, DV, D). @

Consider a minimally coupled massive inflaton in the spatially flat Friedmann—
Robertson—-Walker metric:

ds? = —dt? + RA(t)(dx? + dy? + d ), (3)

whereR(t) is the scale factor representing the size of the universe. The purely
temporal component of the classical gravity is the classical Einstein equation:

R(t) 2_ 87 Too

(@) = m2 RAD)’ @
where

Rs(t)< (O 2¢22(t)>' )

is the energy density of the inflaton. The classical equation of motion for the
inflaton is given by

R(t)

0+ (7

)0+ o - ©

In cosmological context, the classical Einstein equation means that the Hubble con-
stantH = R(t)) is determined by the energy density of the dynamically evolving
homogeneous massive scalar field described by the classical equation of motion.

3. POWER-LAW EXPANSION IN BIANCHI TYPE-I UNIVERSE

The inflaton can be studied in the Bianchi type-I cosmology by using the
basic equations discussed in the previous section. In the Bianchi type-I universe,
a spatially homogeneous and anisotropic metric is given by

3
ds® = —dt®* + ) RX(t)dx?, )
i=1

where R4(t), Ra(t), and Rs(t) are the scale factors iR, y, and z directions,
respectively, which are representing the size of the universe in their respective
direction. The Bianchi type-l model is an anisotropic generalization of the FRW
model with the Euclidean spatial geometry. The three scale faRg(ty, R(t),
andR,(t) are determined via the Einstein equation.
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In the background metric (7), consider a homogeneous massive scalar field,
minimally coupled to gravity, satisfying

(g#vvuvv - m2)¢ =0, (8)

whereV,, is the covariant derivative and = 0, 1, 2, 3;9"" is the reciprocal of
the metric. The Lagrangian density for the scalar fields given by

1
£ =—57/=0(g" D¢ + M7, ©)
whereg is the determinant of the metrg;,, . For the metric (7), (8) becomes
; SR 2
b0+ (7)) o0+ o =0 (10)

In the present context Eqg. (10) is the classical equation of motion for the scalar
field for the metric (7).

The scalar field can be quantized, by canonical quantization rules, in a way
consistent with the equation of motion, by defining the momentum conjugate to
¢, as

_ac
i

The massive minimal inflaton in the Bianchi type-I cosmological model can be
described by a time dependent harmonic oscillator, and can be obtained by using
Egs. (9) and (11) in following relation

Ty (11)

H=myp— L. (12)

Therefore the Hamiltonian is obtained as
_ 1 2, MRIOR2()Rs()
T 2Ri(ORA(DRa(t) 2
For the metric (7), the purely temporal component of the classical gravity is now
the classical Einstein equation:

Ri(t) Ra(t) | Ra(®) Ralt) | RaMRa(t) _ 87 To

Ra(t) Rot) ~ Ra(t) Ra(t)  Ra(t) Ra(t)  m2 Ra(t)Ra(t)Ra(t)’

Hm P%(1) (13)

(14)

The eigenstate of the Hamiltonian can be constructed by using the annihilation
and creation operators in the following manner:

a(t) = ¢* (1) — Ra(t)R2(t)Ra(t)e* (1)

A (15)
al(t) = (1), — Ra(t)Ra(t)Ra(t)o(t)d
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Therefore the Fock space of the Hamiltonian is
al(ha)IV, ¢, 1) = NIV, ¢, 1) (16)

In the present context the semiclassical theory of Einstein equation takes the fol-
lowing form:

Ra(t) Ra(t) | Rat) Ra(t) | Ra(t) Ra(t) _ 8
Ra(t) Ra(t)  Ra(t) Ra(t)  Ra(t) Rs(t)  mIRa(t)R2(t)Ra(t)
where is given by Eq. (13).
The expectation value dff can be computed in number state, ¢, t) by
using (15) and (16) in (13) and apply the result in (17), we obtain the semiclassical
Einstein equation as
Ra(t) Ralt) | Ralt) Ra(t) | Ra(t) Ra(t)
Ra(t) Ro(t)  Rot) Rs(t)  Ra(t) Ra(t)

_8r {(/v + %) (6% + m2¢*¢>)} (18)

(H) (17)

2
my

In the above equationg,and¢™* satisfy (6) and the boundary condition

Ri(R2DR3()($* (D) (t) — ¢* () = . (19)
Transform the solution in the following form:

1
0= o) (20)

Therefore (10) becomes

o (356 SRR

i#]=1

3 R
-3 R'—(t)) n(t) = 0, (21)

i=1
Next, concentrating on the oscillatory phase of the inflaton after inflation in the
parameter region with the inequality

IEG /RN 1S (RO)R(Y) 3 Rif)
v R R GRS @
4; Ri 2i7;=:l Ri(t) R(t) 2 R('[)
inflaton has an oscillatory solution of the form

1 .
"0 = s exp<—| / ﬂ(t)dt>, (23)
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where
Ri(t) 1 RORM) 1S (RO, 30N 350
ﬂ‘”‘l”‘” Z(R(t)) 2, Z (R.(t)R t))‘é (R.(t)) (o) 250
(24)
To solve the semiclassical equation (18), rewrite the equation as follows:
8r 1\ 1 1
RiO)Ro(DR3(t) = — (N + 2 )| 0= —— : .
1OR2(ORa(0) mp( + 2) 28 (Rl(t) Ral) | Rel) Ral) | R R(t))
Rat) Ro(t) © Ra(t) Rs(t Rl(t) Ra(t)
1 3 5. 5 . t 3
5 _Z<R.(t)7z()) §Z Rit) B
4= \RiOR;M)) 45 \RM)) B
1 :B 2 2
(= 25
+ 4( ﬂ> +B +m} (25)

The above equation can be solved perturbatively. Starting from the approximation
Raot) = Riot?3, Rao(t) = Raot?3, Rao(t) = Raot?3, andBo(t) = m, we obtain
the next order perturbative solution f&r

Ruslt) = —— (J\f + > [1+ 5 12t2] mt** (26)

mM2R20R 30

Similarly the next order perturbation solution f®, and R3 are respectivly
obtained as

6 1
Ro(t) = ——— 1 t2/3, 27
alt) = mZR10R 30 (N " ) |: i Zmztz] " @7
and
67 1 1
Rat) = ————— -1 t2/3, 28
2t mM2R10R 20 <N+ 2) [ + 2m2t2] m (28)

whereRR11; means the next order perturbation solution for the scale f&&tdam the
x direction and the same hold f&r,; andR 31, respectively in thg andz directions.
From the above three equations, it follows that

Rag ~ t?3,

Ry ~ (23 (29)
and

Rap ~ %3,

Which shows, irrespective of direction, all scale factors follow the same power-law
of expansion.
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4. CONCLUSIONS

In this paper, we have studied a homogeneous and massive scalar field min-
imally coupled to the gravity, in the Bianchi type-I universe in the frame work of
semiclassical theory of gravity. The approximate leading solution to the semiclas-
sical Einstein, in the oscillatory phase of the inflaton after inflation, is found. The
next order solution for each scale factor in their respective direction, shows that
each scale factor in each direction follow#s® power-law of expansion. Further,
the solution for one of the scale factors dependent on the initial value of the other
scale factors of other directions. Therefore it can be concluded that, evolution
scale factors are mutually correlated. WHei(t) = R,(t) = Ra(t) = R(t), the
corresponding solution becomes as that of isotropic model case and the result is
consistent with the result obtained in Kim and Kim (1998). From anisotropic to
isotropic transition a damping mechanism is required. One of the efficient damp-
ing mechanisms, can be due to the particle creation in anisotropic models, as
discussed by Hu and Parker (1978). Therefore particle production mechanism can
bring isotropy in the Bianchi type-1 model. The present study can account for the
power-law of expansion of the scale factors in the Bianchi type-l universe, for
a homogeneous and massive scalar field minimally coupled to the gravity in the
frame work of semiclassical theory of gravity.
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